Matematiikan taikaa

,

5/9. Mittakaava. Sabine haluaa tatuoida ohjelman logon käsivarteensa, mutta hänellä oleva kuva on liian suuri. Kuinka se voidaan pienentää sopivan kokoiseksi matemaattisesti laskemalla? (U)

korosta Korostus

Edelliset lähetykset

Matematiikan taikaa

5/9. Mittakaava. Sabine haluaa tatuoida ohjelman logon käsivarteensa, mutta hänellä oleva kuva on liian suuri. Kuinka se voidaan pienentää sopivan kokoiseksi matemaattisesti laskemalla? (U)

Matematiikan taikaa

4/9. Nopeus. Sabine laskee, kumpi on nopeampi tapa matkustaa Tukholmasta Västeråsiin, urheiluauto vai juna. Asiaa kokeillaan myös käytännössä autourheiluasiantuntija Fredrik Huldtin kanssa. (U)

Matematiikan taikaa

3/9. Tilavuus. Kuinka paljon vaniljakastiketta tarvitaan ison lasitankin täyttämiseksi? Entä mitä pitää ottaa huomioon, kun siellä istuu joku? Sabine laskee tänään tilavuuksia, pinta-aloja ja korkeuksia. (U)

Matematiikan taikaa

2/9. Todennäköisyys. Pelataan lehmäbingoa! Millä todennäköisyydellä lehmä kakkii tiettyyn lehmihaan ruutuun? Tai kuinka todennäköistä on nostaa korttipakasta herttarouva? Sabine käyttää apunaan todennäköisyyslaskentaa. (U)

Matematiikan taikaa

1/9. Ympyrän kehä. Sabine laskee, miten pitkän köyden kiipeilijä tarvitsee laskeutuakseen Globen-hallin päältä alas. Kuinka ympyrän kehä lasketaan, ja mitä tehdä, jos todellisuus ei vastaakaan laskukaavaa? (U) HD

Matematiikan taikaa

6/9. Yhtälö. Kuinka monta skeittilautaa tarvitaan torniin, joka on yhtä korkea kuin cheerleadereiden muodostama kolmikerroksinen pyramidi? Onnistuuko Sabine laskemaan tornin korkeuden oikein yhtälön avulla? (U) HD

Matematiikan taikaa

5/9. Mittakaava. Sabine haluaa tatuoida ohjelman logon käsivarteensa, mutta hänellä oleva kuva on liian suuri. Kuinka se voidaan pienentää sopivan kokoiseksi matemaattisesti laskemalla? (U) HD

Matematiikan taikaa

8/9. Murtoluvut. Kuinka vahva moottori tarvitaan rakettiin, jotta se nousisi 300 metrin korkeuteen? Sabine laskee asian murtoluvuilla ja seuraa raketin laukaisua astronautti Christer Fuglesangin kanssa. (U) HD

Matematiikan taikaa

1/9. Ympyrän kehä. Sabine laskee, miten pitkän köyden kiipeilijä tarvitsee laskeutuakseen Globen-hallin päältä alas. Kuinka ympyrän kehä lasketaan, ja mitä tehdä, jos todellisuus ei vastaakaan laskukaavaa? (U) HD

Matematiikan taikaa

7/9. Pythagoraan lause. Sabine haluaa laskea vanhassa kaivoksessa olevan jääseinän tarkan korkeuden. Siinä auttaa Pythagoraan lause, mutta ensin Sabinen on laskeuduttava syvälle pimeään ja kylmään kuiluun. (U) HD